1). Grok-1 - a mixture-of-experts model with 314B parameters which includes the open release of the base model weights and network architecture; the MoE model activates 25% of the weights for a given token and its pretraining cutoff date is October 2023. (paper | tweet)
2). Evolutionary Model Merge - an approach for automating foundation model development using evolution to combine open-source models; facilitates cross-domain merging where a Japanese Math LLM achieved state-of-the-art performance on Japanese LLM benchmarks, even surpassing models with significantly more parameters, despite not explicitly trained for these tasks. (paper | tweet)
3). TacticAI - an AI-powered assistant for football tactics developed and evaluated in collaboration with domain experts from Liverpool FC; the systems offer coaches a way to sample and explore alternative player setups for a corner kick routine and select the tactic with the highest predicted likelihood of success; TacticAI’s model suggestions are favored over existing tactics 90% of the time and it offers an effective corner kick retrieval system. (paper | tweet)
4). Tool Use in LLMs - provides an overview of tool use in LLMs, including a formal definition of the tool-use paradigm, scenarios where LLMs leverage tool usage, and for which tasks this approach works well; it also provides an analysis of complex tool usage and summarize testbeds and evaluation metrics across LM tooling works. (paper | tweet)
5). Step-by-Step Comparisons Make LLMs Better Reasoners - proposes RankPrompt, a prompting method to enable LLMs to self-rank their responses without additional resources; this self-ranking approach ranks candidates through a systematic, step-by-step comparative evaluation; it seems to work well as it leverages the capabilities of LLMs to generate chains of comparisons as demonstrations; RankPrompt significantly enhances the reasoning performance of ChatGPT and GPT-4 on many arithmetic and commonsense reasoning tasks. (paper | tweet)
6). LLM4Decompile - a family of open-access decompilation LLMs ranging from 1B to 33B parameters; these models are trained on 4 billion tokens of C source code and corresponding assembly code; the authors also introduce Decompile-Eval, a dataset for assessing re-compatibility and re-executability for decompilation and evaluating with a perspective of program semantics; LLM4Decompile demonstrates the capability to decompile 21% of the assembly code, achieving a 50% improvement over GPT-4. (paper | tweet)
7). Agent-FLAN - designs data and methods to effectively fine-tune language models for agents, referred to as Agent-FLAN; this enables Llama2-7B to outperform prior best works by 3.5% across various agent evaluation datasets; Agent-FLAN greatly alleviates the hallucination issues and consistently improves the agent capability of LLMs when scaling model sizes while generally improving the LLM; (paper | tweet)
8). LLMs Leak Proprietary Information - shows that it’s possible to learn a large amount of non-public information about an API-protected LLM using the logits; with a relatively small number of API queries, the approach estimates that the embedding size of OpenAI's gpt-3.5-turbo to be about 4,096; the paper also proposes guardrails against the attacks used. (paper | tweet)
9). DROID - an open-source, large-scale robot manipulation dataset to train and build more capable and robust robotic manipulation policies; it contains 76K demonstration trajectories, collected across 564 scenes and 86 tasks; training with DROID leads to higher performing policies and generalization. (paper | tweet)
10). Retrieval-Augmented Fine-Tuning - combines the benefits of RAG and fine-tuning to improve a model's ability to answer questions in "open-book" in-domain settings; combining it with RAFT's CoT-style response helps to improve reasoning. (paper | tweet)